泽连斯基首次公开指责中国,久操尤物视频在线观看,岳乱久久,国内3P在线

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > 量子級(jí)聯(lián)激光器和應(yīng)用

技術(shù)文章

量子級(jí)聯(lián)激光器和應(yīng)用

技術(shù)文章

Quantum Cascade Lasers and Applications

Content Courtesy of Daylight Solutions

 

Daylight Solutions

Quantum Cascade Lasers (QCLs) were first demonstrated in 1994 by the Bell Labs Team headed by Jérôme Faist and Federico Cappasso.[1] The optical physics of QCLs differ from that of other semiconductor lasers in that the lasing transition occurs between states within a given quantum well. (In contrast, the lasing transition of a diode laser occurs between the conduction band and valence band.) The well depths depend on the thickness of layers created during the fabrication process and hence the wavelength of the QCL can be "engineered." By careful design of the quantum wells, lasing from 2.75 μm[2,3] to 161 μm[4] (1.9 THz) has been observed. The longer wavelength devices still require cryogenic cooling, but room temperature operation is possible to at least 16 μm[5]. Commercial availability has concentrated in the mid-infrared (3.5 - 13 μm).

 

The gain profile of a QCL can be quite broad (500 cm-1 in select cases). By providing wavelength feedback – either through the use of Distributed Feed Back or by constructing an external cavity (ECqcL™), the linewidth of the emission can be passively narrowed to as little as 0.00002 cm-1 (500 kHz), but a practical limit is closer to 5 - 50 MHz. Further, in both device architectures, the emission wavelength can be tuned (through temperature or grating rotation respectively) although the DFB is limited to only a couple of wavenumbers whereas the ECqcL™ can provide hundreds of wavenumbers. Thus narrow-band, widely tunable mid-infrared light is obtained in a single-stage, semiconductor device.

 

In the spectral region served by QCLs, many species have strong fundamental absorptions and so access to the mid-infrared facilitates their detection and identification. Detections in the parts per trillion range[6] and/or discrimination between similar species are possible. Figure 1 is a representation of the mid-infrared portion of the spectrum with a number of species placed where their strong absorptions occur. It can be seen that the mid-IR is rich in information for those wishing to probe, detect, image, or quantify these and many other species including explosives, nerve agents, and toxins.

Figure 1: Graphical Representation of the Location of Strong Absorptions of Molecules of Interest

 

A key application for QCLs is stand-off explosives detection. In this developing field researchers have set the ambitious goal of detecting and discriminating nanogram quantities of various explosives at distances up to 50 m with eye-safe lasers. There are a number of tactics being employed,[7,8] one approach being Thermal Imaging.[9,10] When a compound absorbs infrared light, it re-emits most of the absorbed light isotropically as heat which can be imaged by infrared cameras. Since each analyte has a unique absorption spectrum, each will heat selectively as the IR source is tuned through these absorptions and may be identified unambiguously by analysis of the multi-spectral or hyperspectral data cube produced.

 

While QCLs serve as the engines for new techniques in spectroscopy in the mid-IR, they also can provide raw power at new performance levels. Powers exceeding 5 W have been demonstrated from single room-temperature devices.[11] Combining performance such as this with ruggedized packaging has enabled a new generation of Infrared Countermeasure (IRCM) devices. High-power, solid-state lasers that operate in mid-infrared "atmospheric windows" can be used by pointer-trackers to disable the heat seeking mechanism employed on surface-to-air missiles, thus safeguarding soldiers in battlefield situations. Multiple "socket" QCL-based laser systems have been militarily hardened and have completed helicopter flight testing.

 

Quantum Cascade Lasers are a relatively new technology for accessing the mid-infrared out to Terahertz wavelengths. They have moved from laboratory curiosity through technology acceptance and into technology reliance as robust systems are commercially delivered in production quantities for a number of applications. For more information on ECqcL™ technology, please visit the Daylight Solutions website.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
安庆市| 精品久久九九视频播放| 少妇4p| 少妇天天综合在线| 久爱www人成免费网站一| 国产午夜精品一区二区三区久久 | 曰韩不卡国产精品乱码| 国产成人精品日本欧美动漫| 男人的天堂亚州| 免费一级aα无码看片| 202 0亚洲天堂| 久久国产精品-国产精| 少妇销魂久久| 国产精品三级视频| 义乌市| 亚洲一区无码中文字幕乱码| 无码高清中文字幕a| 东京热2无码动漫片| 亚洲综合在线小说| 人妻无码69| 亚洲一区二区三区无码大片| 宾阳县| 国产无码精品电影| 无码视频在线看| 亚洲中文久久精品无码浏不卡| 伊人久久大香线蕉av专区性呦| 妓女妓女爽爽一区二区| 久久猜品人人莫| 草草理论视频| 成人国产片免费| 拍中文字幕人妻| 国产伦一区二区三区四区| 久久久久噜噜噜噜| 一道夲无码传区| 在线新拍精品国产91| 狼友av永久网站免费观看武| 男女激情97| 久久精品无码一区二区三区色欲| 亚洲精品一二三四五区| 女自慰喷水www免费观看| 狠色婷婷久久一|